Как восстановить нейронные связи

Нейроны: как осуществляется межклеточная коммуникация

Работа и ЦНС (центральной нервной системы), и ПНС (периферической нервной системы) происходит аналогично. Это возможно, благодаря нейронам и синаптической сети — средствам межклеточной коммуникации.

Строение нейрона

Типичный нейрон состоит из тела клетки (сомы), дендритов и аксонов:

  • Дендриты — это короткие и разветвленные отростки нейронов.
  • Аксон — это клеточное расширение, проходящее большие расстояния в теле человека и других биологических видов. Аксон может сделать несколько переходов и по окончанию подсоединиться к нескольким клеткам.

В головном мозге взрослого человека существует около 300 триллионов синапсов.

Связи между нервными клетками осуществляются такими способами:

  • от аксона одного нейрона к дендритам или сотовому телу другого;
  • от аксона к аксону;
  • от дендритов к дендритам и т. д.

Клеточные мембраны сомы и аксона активируют напряжение в электропроводящих закрытых ионных каналах (Ca, Na, K и хлорид-ионных).

Нейропластичность или инкубатор кусочков мозга

Старая медицинская школа была убеждена, что количество нейронов мозга не меняется после того, как тело человека окончательно сформировалось. Не так давно выяснилось, что такая гипотеза оказалась очередным заблуждением.

Неисчерпаемым ресурсом для генерирования являются стволовые клетки. Какую выгоду и пользу это открытие приносит человеческому организму?

Почему необратимы повреждения нейронов

Как восстановить нейронные связи

Нейрон — специфическая клетка, не способная делиться, особенно в зрелом возрасте. Поэтому повреждение нерва из-за травмы может привести к нарушению функций периферической нервной системы.

Паралич после травм спинного и головного мозга, потеря чувствительности связаны с полным блоком проводимости -обрывом связей между эфферентными (двигательными) и афферентными (чувствительными) нейронами.

(Но утверждение о том, что нейрогенез у взрослого человека вообще не происходит, ошибочно. Да, нейрогенез зависит от многих внешних условий, и может угнетаться от вредных воздействий (радиации, химических веществ, стрессы), но появление новых нейронов происходит и у взрослых, особенно в гиппокампе, в височных отделах головного мозга.

Подробнее о регуляции нейрогенеза, о способах воздействия на него — в интересном видео в конце статьи).

  • Валлерова дегенерация:
    • Разрыв нерва, повреждение аксона и его миелиновой оболочки.
    • Через неделю после травмы начинается блокировка проводимости.
    • Восстановление возможно, если сохранена базальная мембрана (в ее функции входят производство миелина (Шванн клеток) и выбор (аппроксимация) нервных окончаний).
    • Результатом такого повреждения может стать мышечная атрофия в зоне иннервации нейрона.
  • Сегментная демиелинизация:
    • Повреждение ограничивается миелиновой оболочкой.
    • При сохранении аксона мышечная дистрофия не наблюдается.
  • Дегенерация аксонов:
    • Повреждается тело нервной клетки, и происходит дистальная гибель аксона.
    • Развитие мышечной атрофии происходит при отсутствии повторной иннервации от соседних нервов.
    • При таком типе повреждения возможно лишь частичное восстановление.

Последнее десятилетие ученые бьются над новыми методами, позволяющими не допустить блокировку проводимости и смерть аксонов после травмы и сохранить жизнеспособность нейронной сети:

  • Разрывы аксонов устранялись путем помещения поперек разрыва разрешительной матрицы.
  • Проводилась клеточная терапия ноотропными препаратами для стимуляции роста и регенерации поврежденных аксонов.
  • В качестве альтернативных методов при повреждениях миелиновой оболочки применяли ингибиторы роста ассоциативных нейронов и ингибиторы роста рубца.
  • Для предотвращения гибели клеток после травмы использовалась молекулярная защита.

Однако все эти обнадеживающие методы имели лишь частичный успех.

Избирательно подсоединить конкретный аксон к телу клетки нейрона.

  • Восстановить связи между нейронами сразу после травмы и предотвратить блокировку проводимости.
  • Проверить гипотезу о физической привязанности и восстановлении при приближении нервных окончаний.

Лазерная технология с применением фемтосекундных импульсов — яркий кандидат для избирательного подсоединения нейронов. Она используется в нанохирургии как метод лечения рака:

  • для ортопорации (открытии переходного канала в клеточной мембране)
  • трансфекции (внедрении нуклеиновых кислот в ядерные клетки).

Удалить или ионизировать можно материал размером менее дифракционного пятна без ущерба для окружающих тканей.

Фемтосекундные лазерные импульсы были также использованы в качестве инструмента для изучения регенерации нейронов путем разделения нейронов и аксонов.

Но физическое соединение отдельных нейронов до сих пор не выполнялось.

Суть эксперимента

В результате испытания под воздействием лазерного излучения с точными параметрами настройки на культивированном в растворе DMEM биоматериале была произведена гемифузия (слияние) двух фосфолипидных мембран клеток нейронов.

Слияние достигнуто с помощью фемтосекундных лазерных импульсов с длиной волны 800нм, с параметрами излучения:

  • интенсивность и разрешающая способность соответственно:
    • 1,7 (± 0,08) x 10 12 Вт / см 2 и ± 0,5 мкм;
  • частота повторения 80Мгц;
  • эффективный размер пятна — 600нм.
  • идеальное время облучения составило один-два 15 мс импульсов (т.е. 1,2×106 импульсов).

В качестве биоматериала использовались:

  • P19 клетки тератокарциномы мыши;
  • Neuro2A клетки нейробластомы мыши;
  • телячья, бычья и коровья сыворотка.

На рис. 1 представлены суть эксперимента:

  1. Фемтосекундный лазерный импульс доставляется в целевую точку между аксоном и телом нервной клетки (сомой).
  2. Фосфолипидные бислои нейрона сомы и аксона до воздействия лазера (кругом отмечена область прикрепления фософолипидных слоев).
  3. Лазерный импульс высокой интенсивности вызывает обратимую дестабилизацию обеих фосфолипидных слоев. Под воздействием фемтосекундного лазерного импульса в индуцированной зоне слияния аксон-сома сгенерированные свободные ионы (показаны красным цветом) и свободные электроны (показаны оранжевым) пересекают неполярную центральную область и разрывают связи между жирными кислотами гидрофобных хвостов.
  4. В результате процесса релаксации в целевой точке формируются новые стабильные связи и особая гемифузионная клеточная мембрана — общий фосфолипидный бислой.
  • Выбирались и выделялись клетки для соединения и приводились в контакт с использованием оптического пинцета таким образом, чтобы выступающий аксон одного нейрона коснулся сомы другого нейрона.
  • Клетки оставлялись на какое-то время, чтобы убедиться, что между ними не происходит естественного слияния, после чего они растаскивались оптическим пинцетом.
  • Затем нейроны опять сближали и при помощи фемтосекундных лазерных импульсов облучали область между аксоном и сомой клетки.
  • Для подтверждения соединения один из нейронов перемещался пинцетом внутрь подвески чашки:
    • было обнаружено, что все остальные нейроны следовали за ним, скручивались и поворачивались как одно целое.

Рис. 2 демонстрирует последовательность соединения одного нейрона к нескольким и создание цепочки нейронов с использованием фемтосекундных лазерных импульсов (стрелками обозначена связь аксона и сомы).

  1. Присоединение двух Neuro2A клеток, где аксон клеток (I) прилагается к соме (II).
  2. Второй аксон Neuro2A (I) соединяется с сомой Neuro2A (III).
  3. Демонстрируется неразрывность новых связей при повороте соединенных клеток на 30° относительно прежнего положения.
  4. Определены и выделены две группы четырех P19 клеток.
  5. Аксон нейрона (I) вступил в контакт и был связан с сомой (II) с помощью фемтосекундных лазерных импульсов, и обе группы соединились.
  6. Положение цепочки после того, как ее повернули оптическим пинцетом.

Таким образом были прикреплены несколько групп нейронов.

Нейрогенез – это постоянный процесс, на который периодически могут негативно воздействовать различные факторы. В современной нейробиологии известны некоторые из них.

  1. Химиотерапия и лучевая терапия, применяющиеся в лечении раковых заболеваний. Клетки-предшественницы испытывают на себе влияние этих процессов и перестают делиться.
  2. Хронический стресс и депрессия. Количество клеток мозга, которые находятся в стадии деления, резко уменьшается в тот период, когда человек испытывает негативные эмоциональные чувства.
  3. Возраст. Интенсивность процесса формирования новых нейронов уменьшается к старости, что сказывается на процессах внимания и памяти.  
  4. Этанол. Установлено, что алкоголь повреждает астроциты, которые участвуют в производстве новых клеток гиппокампа.

Перед учеными стоит задача – изучить как можно полнее эффекты воздействия внешних факторов на нейрогенез с целью того, чтобы понять, как зарождаются те или иные болезни и что может способствовать их излечению.

Как восстановить нейронные связи

Исследование формирования нейронов мозга, которое проводилось на мышах, показало, что физические нагрузки напрямую влияли на деление клеток. Бегающие в колесе животные давали положительные результаты по сравнению с теми, кто сидел без дела.

В настоящее время интенсивно проводятся эксперименты, которые ставят своей целью поиск веществ или других терапевтических воздействий, способствующих формированию нейронов. Так, в научном мире известно о некоторых из них.

  1. Стимуляция процесса нейрогенеза с помощью биоразлагаемых гидрогелей показала положительный результат на культурах стволовых клеток.
  2. Антидепрессанты не только позволяют справиться с клинической депрессией, но и влияют на восстановление нейронов у страдающих этим заболеванием. В связи с тем, что исчезновение симптомов депрессии при лекарственной терапии происходит примерно за один месяц, а процесс регенерации клеток занимает столько же, ученые выдвинули предположение, что появление этой болезни напрямую зависит от того, что нейрогенез в гиппокампе замедляется.
  3. В исследованиях, направленных на изучение поиска способов восстановления тканей после ишемического инсульта, было установлено, что периферийная стимуляция головного мозга и физиотерапия усиливали нейрогенез.
  4. Регулярное воздействие агонистами дофаминовых рецепторов стимулирует восстановление клеток после их поражения (например, при болезни Паркинсона). Важным для этого процесса является различная комбинация лекарственных средств.
  5. Введение тенасцина-С – белка межклеточного матрикса – воздействует на клеточные рецепторы и повышает регенерацию аксонов (отростков нейронов).

Отдельно необходимо сказать о стимуляции нейрогенеза посредством введения стволовых клеток, которые являются предшественниками нейронов. Этот метод является потенциально действенным в качестве лечения дегенеративных болезней головного мозга. В настоящее время он проводился только на животных.

Для этих целей используются первичные клетки зрелого мозга, сохранившиеся еще со времен эмбрионального развития и способные к делению. После деления и трансплантации они приживаются и превращаются в нейроны в тех самых отделах, уже известных как места, в которых осуществляется нейрогенез – субвентрикулярной зоне и гиппокампе. В других областях они образуют глиальные клетки, но не нейроны.

После того, как ученые поняли, что нервные клетки восстанавливаются из нейрональных стволовых, они предположили, возможность стимуляции нейрогенеза посредством других стволовых клеток – кровяных. Правда оказалась в том, что они проникают в мозг, но образуют двуядерные клетки, сливаясь с существующими уже нейронами.

Где восстанавливаются клетки

В настоящее время «взрослый» нейрогенез изучен на том уровне, который позволяет сделать вывод о том, где он происходит. Существуют две таких области.

  1. Субвентрикулярная зона (находится вокруг мозговых желудочков). Процесс регенерации нейронов в этом отделе совершается непрерывно и обладает некоторыми особенностями. У животных происходит миграция стволовых клеток (так называемых предшественниц) в обонятельную луковицу после их деления и превращения в нейробласты, где они продолжают свою трансформацию в полноценные нейроны. В отделе человеческого головного мозга происходит тот же самый процесс за исключением миграции – что, скорее всего, связано с тем, что для человека функция обоняния не так жизненно необходима, в отличие от животных.
  2. Гиппокамп. Это парный отдел головного мозга, который является ответственным за ориентацию в пространстве, закрепление запоминаний и формирование эмоций. Нейрогенез в этом отделе особенно активен – в сутки здесь появляется около 700 нервных клеток.

восстановление связей между нейронами

Некоторые ученые утверждают, что в человеческом мозге регенерация нейронов может происходить и в других структурах – например, коре больших полушарий.

Современные представления о том, что образование нервных клеток присутствует во взрослом периоде жизни человека, открывает огромные возможности в изобретении методов лечения дегенеративных болезней головного мозга – Паркинсона, Альцгеймера и подобных, последствий черепно-мозговых травм, инсультов.

Ученые в настоящее время пытаются выяснить, что именно способствует восстановлению нейронов. Так, установлено, что астроциты (особые нейроглиальные клетки), которые являются самыми устойчивыми после клеточного повреждения, производят вещества, стимулирующие нейрогенез.

Также предполагают, что один из факторов роста – активин А – в сочетании с другими химическими соединениями дает возможность нервным клеткам подавлять воспаление. Это, в свою очередь, способствует их регенерации. Особенности обоих процессов еще недостаточно изучены.

Желание, приобретение новых навыков и информации меняет схемы соединений нейронов мозга. Это свидетельствует о том, что каждый человек способен полностью контролировать свою жизнь и все ее события. Ход мыслей влияет на привычки и меняет цепочки связей нейронов мозга.

Благодаря этому, тело также терпит изменения.  Постоянное приобретение дополнительных навыков и обработка новой информации в значительной мере влияют на мозг, а вместе с тем и на ход событий. Этот феномен получил название нейропластичность.

Таким образом, еще раз доказан тот факт, что мысль имеет материализующуюся силу. Поэтому, не пускайте в свои нейронные цепочки скверные мысли и дурные настроения. Наполняйте свою жизнь только положительными переживаниями, оптимистическими мыслями и добрыми словами.

Как можно тренировать нейропластичность?

Потенциал наших созданных нейронных связей неисчерпаем, поэтому мы сами можем выстраивать цепочки, которые буду отвечать за наше поведение и настроение. Мы можем тренировать свои когнитивные способности, тем самым влияя на ситуацию.

  • Играть в игры,
  • Обязательно много читать и записывать (лучше выводы),
  • Иметь любимое хобби,
  • Постоянно учиться,
  • Развиваться в неизвестных для себя сферах и путешествовать.

Существует масса игр. Предназначенных специально для взрослых, которые как нельзя лучше влияют на развитие когнитивных способностей. Например:

  • монополия,
  • шахматы,
  • карточные игры,
  • игра в слова и т.д.

строение нейрона

Заставляя свой мозг думать в необычном для него направлении, Вы развиваете его деятельность:

  • память,
  • концентрацию,
  • зрительно-пространственные ассоциации,
  • логику,
  • организованность,
  • быстроту принятия решений.

Каждый день, читая и записывая, Вы развиваете гиппокамп. Это часть мозга, которая отвечает за память.

Кроме того, чтобы усложнить процесс, тренируйтесь читать слова наоборот или спелить (произносить по буквам).

Иметь увлечение, которое Вам нравиться, это уже само по себе – иметь пытливый ум. Чем сложнее Вам будет его осваивать, тем лучше для тренировки мозговой активности. Лучше иметь несколько увлечений, но разнонаправленных, чтобы задействовать все сферы деятельности:

  • рисование для развития воображения,
  • ролики для улучшения координации движений.
  • шитье и вязание для стимуляции мелкой моторики рук и т.д.

Постоянное обучение (желательно в течение всей жизни), не глядя на возраст, вызывает:

  • структурные,
  • химические,
  • функциональные

изменения в мозговой активности. Многие ученые считают, что постоянное обучение способствует созданию новых нейронных соединений, которые предотвращают появление болезни Альцгеймера.

Также изучение языков, особенно на склоне лет, способно отодвинуть старение вашего мозга на длительный срок.

Постоянно меняя место дислокации, находясь в незнакомых для себя условиях, мы развиваем способность нашего организма адаптироваться к различным нестандартным ситуациям.

Любое изменение привычного образа жизни позитивно сказывается на деятельности мозга, выстраивая новые нейронные связи в нем. И не имеет значения, куда Вы путешествуете и каким образом, главное не превращать свою жизнь дорогу: дом-работа-дом. Меняйте привычные устои, больше экспериментируйте.

Таким образом, применяя все эти упражнения, Вы сможете долго оставаться эмоционально и умственно активными.

Заключение

На протяжении всего наблюдения и проведенных манипуляция нервные клетки показали свою жизнеспособность и прочность крепления.

Фемтосекундный лазер-индуцированной способ соединения нейронов потенциально может обеспечить научный прорыв, который откроет новые горизонты в исследованиях влияния соединительных нейронов прямо перед или после травмы.

Сохранение жизнеспособности нейронной сети позволит исследователям изучать новые сложные патофизиологические процессы, такие как нейрогенез, валлеровская дегенерация, сегментарная демиелинизации и дегенерация аксонов. Это позволит дальнейшее развитие новых методов лечения нервных травм и болезней.

(По материалам статьи научного журнала Nature. Scientific reports)

“Проводка”

Нейронные связи головного мозга — проводка нервной системы. Работа нервной системы основана на способности нейрона воспринимать, обрабатывать и передавать информацию другим клеткам.

Информация передается через нервный импульс. Поведение человека и функционирование его организма полностью зависит от передачи и получения импульсов нейронами через отростки.

У нейрона два типа отростков: аксон и дендрит. Аксон у нейрона всегда один, именно по нему нейрон передает импульс другим клеткам. Получает же импульс через дендриты, которых может быть несколько.

К дендритам “подведено” множество (иногда десятки тысяч) аксонов других нейронов. Дендрит и аксон контактируют через синапс.

Нейрон и синапсы

Щель между дендритом и аксоном — синапс. Т.к. аксон “источник” импульса, дендрит “принимающий”, а синаптическая щель — место взаимодействия: нейрон, от которого идет аксон, называют пресинаптическим; нейрон, от которого идет дендрит, — постсинаптическим.

Синапсы могут формироваться и между аксоном и телом нейрона, и между двумя аксонами или двумя дендритами. Многие синаптические связи образованы дендритным шипиком и аксоном. Шипики очень пластичны, обладают множеством форм, могут быстро исчезать и формироваться. Они чувствительны к химическим и физическим воздействиям (травмы, инфекционные заболевания).

В синапсах чаще всего информация передается посредством медиаторов (химических веществ). Молекулы медиатора высвобождаются на пресинаптической клетке, пересекают синаптическую щель и связываются с мембранными рецепторами постсинаптической клетки. Медиаторы могут передавать возбуждающий или тормозящий (ингибирующий) сигнал.

Нейронные связи головного мозга представляют собой соединение нейронов через синаптические связи. Синапсы — функциональная и структурная единица нервной системы. Количество синаптических связей — ключевой показатель для работы мозга.

Рецепторы

Рецепторы вспоминают каждый раз, когда говорят про наркотическую или алкогольную зависимость. Почему же человеку необходимо руководствоваться принципом умеренности?

Например, курящие люди никотином изменяют восприимчивость рецепторов к ацетилхолину, происходит десенсибилизация (уменьшение чувствительности) рецепторов. Естественный уровень ацетилхолина оказывается недостаточным для рецепторов с пониженной чувствительность. Т.к.

повреждение нейронов

Впрочем, чувствительность рецепторов постепенно восстанавливается. Хотя это может занимать долгое время, синапс приходит в норму, и человеку больше не требуются сторонние стимуляторы.

Развитие нейронных сетей

Долговременные изменения нейронных связей происходят при различных болезнях (психических и неврологических — шизофрения, аутизм, эпилепсия, болезнях Хантингтона, Альцгеймера и Паркинсона). Синаптические связи и внутренние свойства нейронов изменяются, что приводит к нарушению работы нервной системы.

За развитие синаптических связей отвечает активность нейронов. “Используй или потеряешь” — принцип, лежащий в основе нейронных сетей мозга. Чем чаще “действуют” нейроны, тем больше между ними связей, чем реже, тем меньше связей. Когда нейрон теряет все свои связи, он погибает.

Некоторые авторы высказывают и другие идеи, которые отвечают за регуляцию развития нейронных сетей. M. Butz связывает образование новых синапсов с тенденцией мозга поддерживать “привычный” уровень активности.

Когда средний уровень активности нейронов падает (например, вследствие травмы), нейроны строят новые контакты, с количеством синапсов растет активность нейронов. Верно и обратное: как только уровень активности становится больше привычного уровня, количество синаптических соединений уменьшается.

фемтосекундный лазер

Генри Маркрам, который участвует в проекте по созданию нейронной симуляции мозга, подчеркивает перспективы развития отрасли для изучения нарушения, восстановления и развития нейронных связей. Группа исследователей уже оцифровала 31 тысячу нейронов крысы. Нейронные связи мозга крысы представлены в видео ниже.

Когнитивные нагрузки

Обзоры исследований показывают, что упражнения улучшают настроение и познавательные способности. Данные свидетельствуют о том, что эти эффекты обусловлены изменением уровня нейротрофического фактора (BDNF) и оздоровлением сердечно-сосудистой системы.

Высокие уровни BDNF были связаны с лучшими показателями пространственных способностей, эпизодической и вербальной памяти. Низкий уровень BDNF, особенно у пожилых людей, коррелировал с атрофией гиппокампа и нарушениями памяти, что может быть связано с когнитивными проблемами, возникающими при болезни Альцгеймера.

Изучая возможности по лечению и профилактике Альцгеймера, исследователи часто говорят о незаменимости физических упражнений для людей. Так, исследования показывают, что регулярная ходьба влияет на размер гиппокампа и улучшает память.

Физические нагрузки увеличивают скорость нейрогенеза. Появление новых нейронов — важное условие для переучивания (приобретения нового опыта и стирания старого).

Нейронные связи головного мозга развиваются, когда человек находится в обогащенной стимулами среде. Новый опыт — ключ к увеличению нейронных связей.

Новый опыт — это конфликт, когда проблема не решается теми средствами, которые уже есть у мозга. Поэтому ему приходится создавать новые связи, новые шаблоны поведения, что связано с увеличением плотности шипиков, количества дендритов и синапсов.

Обучение новым навыкам приводит к образованию новых шипиков и дестабилизации старых соединений шипиков с аксонами. Человек вырабатывает новые привычки, а старые исчезают. Некоторые исследования связывают когнитивные расстройства (СДВГ, аутизм, умственную отсталость) с отклонениями в развитии шипиков.

соединение двух нейронов

Шипики очень пластичны. Количество, форма и размер шипиков связаны с мотивацией, обучением и памятью.

Время, требующееся на изменения их формы и размера, измеряется буквально в часах. Но это значит также, что настолько же быстро новые соединения могут исчезать. Поэтому лучше всего отдавать предпочтение кратким, но частым когнитивным нагрузкам, чем длительным и редким.

Образ жизни

— омега-3 (рыба, семена льна, киви, орехи);

— куркумин (карри);

— флавоноиды (какао, зеленый чай, цитрусовые, темный шоколад);

— витамины группы В;

— витамин Е (авокадо, орехи, арахис, шпинат, пшеничная мука);

— холин (куриное мясо, телятина, яичные желтки).

Большинство перечисленных продуктов опосредованно влияют на нейротрофины. Позитивное влияние диеты усиливается при наличии физических упражнений. Кроме того, умеренное ограничение количества калорий в рационе стимулирует экспрессию нейротрофинов.

Для восстановления и развития нейронных связей полезно исключение насыщенных жиров и рафинированного сахара. Продукты с добавленными сахарами снижают уровни нейротрофинов, что негативно сказывается на нейропластичности.

Среди негативных факторов, затрагивающих нейронные связи: курение и стресс. Курение и длительный стресс в последнее время ассоциируют с нейродегенеративными изменениями. Хотя непродолжительный стресс может быть катализатором нейропластичности.

Функционирование нейронных связей зависит и ото сна. Возможно, даже больше, чем от всех остальных перечисленных факторов. Потому что сам по себе сон — “это цена, которую мы платим за пластичность мозга” (Sleep is the price we pay for brain plasticity. Ch. Cirelli – Ч. Цирелли).

Резюме

Как улучшить нейронные связи головного мозга? Положительное влияние оказывают:

  • физические упражнения;
  • задачи и трудности;
  • полноценный сон;
  • сбалансированная диета.

Негативно воздействуют:

  • жирная пища и сахар;
  • курение;
  • длительный стресс.

соединение цепочки нейронов лазером

Мозг чрезвычайно пластичен, но “лепить” из него что-то очень сложно. Он не любит тратить энергию на бесполезные вещи. Быстрее всего развитие новых связей происходит в ситуации конфликта, когда человек не способен решить задачу известными методами.

Понравилась статья? Поделиться с друзьями:

Отправить ответ

avatar
  Подписаться  
Уведомление о
Adblock detector